Man and Machine in Industry 4.0

Man and Machine in Industry 4.0

          
Title image

Man and Machine in Industry 4.0

  • Add To Interests
  • SAVE CONTENT
  • PRINT
  • PDF

  • How Will Industrial Jobs Evolve?

    Industry 4.0 will foster significant changes in how industrial workers perform their jobs, and entirely new job families will be created while others become obsolete. Although the extent to which Industry 4.0, especially robotics, will replace human labor remains a matter of debate among experts, we found universal agreement that manufacturers will increasingly use robotics and other advancements to assist workers. Some experts argue against the notion that all manufacturing jobs can be automated. As Ingo Ruhmann, special adviser on IT systems at Germany’s Federal Ministry of Education and Research, explains, “Complete automation is not realistic. Technology will mainly increase productivity through physical and digital assistance systems, not the replacement of human labor.” The increased use of assistance systems means that the qualitative changes brought about by Industry 4.0 will likely be positive for the workforce. The number of physically demanding or routine jobs will decrease, while the number of jobs requiring flexible responses, problem solving, and customization will increase.

    To perform effectively with Industry 4.0, workers will need to apply a variety of “hard” skills. They will have to combine know-how related to a specific job or process, such as techniques for working with robots or changing tools on machines, with IT competencies that range from basic (using spreadsheets and accessing interfaces) to advanced (applying advanced programming and analytics skills). The need for multiple hard skills and the unprecedented scope of changes on the shop floor mean that “soft” skills will become more important than ever. Employees will have to be even more open to change, possess greater flexibility to adapt to new roles and work environments, and get accustomed to continual interdisciplinary learning.

    Several examples illustrate how Industry 4.0 changes the nature of work:

    • Automotive Assembly-Line Worker. The use of automation to assist workers with manual tasks will be particularly valuable in responding to the needs of the aging workforce in many developed countries. For instance, some automotive assembly-line work currently requires heavy lifting and entails awkward physical positions. A robotic device could be used to relieve a line worker from physically demanding tasks as well as to improve ergonomics. For example, a robot could lift a car’s interior-finishing elements, such as a roof lining, into the chassis and, after manual alignment by a worker, automatically affix the part to the chassis. (See Exhibit 4.)
    exhibit
    • Mobile Service Technician. Industry 4.0 will dramatically improve the productivity of service technicians in the field. (See Exhibit 5.) Today’s service technicians may spend only a few hours each day on value-added work at a single site. Most of their workday is spent traveling to the site and discussing the service problem and a solution with other experts or second-level support colleagues. Manual operations throughout the end-to-end process result in significant delays and downtime. In contrast, Industry 4.0 will enable technology-assisted, predictive maintenance. By remotely reviewing a stream of real-time data on machine performance, the technician will be able to proactively identify defects and order spare parts before arriving at a site. Once on-site, the technician will be assisted in making repairs by augmented-reality technology and will be able to receive remote guidance from experts off-site. The work will also be automatically documented. These productivity improvements will reduce total machine downtime from one day to two hours, providing significant benefits to the customer and enabling the technician to work at multiple sites each day.
    exhibit
    • Machine Operator. Today, a machine operator is responsible for handling work-in-progress and monitoring performance and product quality at a single machine. Industry 4.0’s advancements will make it possible for an operator to carry out the same types of responsibilities at several machines. Standard operating procedures for any given task will be displayed on screens or glasses. The monitoring of machine performance and product quality will be aided by quality control queries provided by an automated system. Consequently, the operator will require less machine- and product-specific training but will need enhanced capabilities for utilizing digital devices and software and accessing a digital knowledge repository.

    Two examples illustrate the new types of roles arising from Industry 4.0:

    • Industrial Data Scientist. Manufacturers will need to create a new role for industrial data scientists. These specialists will extract and prepare data, conduct advanced analytics, and apply their findings to improve products or production. Industrial data scientists must understand both manufacturing processes and IT systems and possess strong root-cause-analysis skills to identify correlations and draw conclusions. Programming skills will be required, including capabilities to use both statistical programming languages, such as R, and general-purpose programming languages, such as Python. Individuals in this role will need the flexibility to address topics continuously or respond to specific requests, as well as be able to work on-site or remotely.
    • Robot Coordinator. The role of robot coordinator will be created to oversee robots on the shop floor and respond to malfunctions or error signals. The coordinator will carry out both routine and emergency maintenance tasks and involve other experts as needed. If a robot must be taken out of service, the coordinator will replace it with a substitute in order to reduce production downtime. In many cases, manufacturers will be able to retrain machine operators to take on this role, reducing the need for new hires.

    It is important to stress that Industry 4.0-related changes to the nature of work and emergence of new roles promise to benefit many workers who might otherwise confront a bleaker outlook for employment. Older employees may be able to continue working longer if, for example, robotic assistance systems support them in physically demanding jobs or provide step-by-step guidance for using new machines. Such assisted-work environments will also create opportunities for people to return to the workforce in entirely new roles if they lose their jobs when their training and experience become obsolete.