The Factory of the Future

The Factory of the Future

Title image

The Factory of the Future

  • Add To Interests
  • PDF

  • What Is the Factory of the Future?

    The factory of the future is a vision for how manufacturers should enhance production by making improvements in three dimensions: plant structure, plant digitization, and plant processes. We discuss the elements of each and provide selected examples that illustrate how leading automotive suppliers and OEMs are testing new concepts.

    Plant Structure

    The plant structure of the future has a more flexible, multidirectional layout, with a modular line setup and environmentally sustainable production processes. Respondents to our survey from the automotive industry expect plant structure to be important in the factory of the future: 86% said this dimension would be highly relevant in 2030, compared with 43% who think it is important today.

    • Multidirectional Layout. The factory of the future deploys a multidirectional layout in which products are placed on driverless transport systems and individually guided through production by communicating with production machinery. The Audi R8 manufacturing facility in Heilbronn, Germany, does not have a fixed conveyor. Instead, driverless transport systems, guided by a laser scanner and radio frequency identification technology in the floor, move the car bodies through the assembly process. Such systems enable assembly layout changes to be made quickly.
    • Modular Line Setup. The plant structure of the future has interchangeable line modules and production machinery that can be easily reconfigured. Toyota is setting up “simple and slim” production lines in factories in Mexico and China. The automaker will use a modular conveyor, which is built on the factory floor instead of in a pit, giving workers greater flexibility in changing the length of the line and in moving the line-side equipment.
    • Sustainable Production. The factory of the future is designed for ecologically sustainable production, including the efficient use of energy and materials. Webasto has equipped its facility in Arad, Romania, with LED lighting and an active nighttime cooling system, thereby significantly reducing energy consumption.

    Plant Digitization

    Manufacturers are increasingly using digital technologies. Of automotive respondents, 70% said that plant digitization would be highly relevant in 2030, compared with 13% who think it is important today. Companies are enabling smarter automation and promoting efficiency in various ways.

    • Installing Smart Robots. Robots can perform more complex tasks than human workers can. Robots can also collect information from each work piece being produced and automatically adjust their actions to its characteristics. Changan Ford has installed flexible industrial robots on a “body in white” welding line. The company plans to use the robots’ functionality, together with a body-framing system, to process six models on a single welding line, performing a changeover to accommodate different models within 18 seconds.
    • Using Collaborative Robots. Robots can collaborate with humans without protective fences. In the power train preassembly at Volkswagen’s plant in Wolfsburg, Germany, a collaborating robot supports workers by tightening screws that are difficult for them to reach.
    • Implementing Additive Manufacturing. Manufacturers are implementing 3D printing of tools and components. To build the Rolls-Royce Phantom, BMW has used 3D printing in series production to create more than 10,000 parts, such as plastic holders for center lock buttons as well as for electronic parking brakes and sockets.
    • Employing Augmented Reality. The use of augmented reality, such as through smart glasses, enables employees to see information as an overlay on their visual field. This assistance is especially helpful in, for example, assembly, maintenance, and logistics. At a plant in Germany, Volkswagen provides 3D smart glasses to logistics workers to facilitate order picking.
    • Applying Production Simulations. Manufacturers are using real-time, 3D representations of production to optimize processes and material flows. The 3D simulation of material flows at Faurecia enables more flexible responses to changes and allows operators to visualize workflows prior to adjusting the production line.
    • Developing Immersive Training Sessions. Training methods have been developed that use 3D simulations to help workers learn in a realistic environment. Mercedes-Benz has developed virtual assembly lines with digital models of the vehicle and assembly components. Employees use an avatar in the virtual environment to analyze the best way to perform an assembly task.
    • Implementing Decentralized Production Steering. Companies are using advanced technology to enable communication among work pieces, machines, and people, thereby creating autonomous production processes. Bosch is developing tools that detect their location in the plant. On the basis of a tool’s location and the information it receives about the exact position of a work piece, the tool automatically loads the appropriate program to perform a specific action. For example, a screwdriver adjusts its torque to tighten screws on a given work piece.
    • Using Big Data and Analytics. Manufacturers are using applications to automatically analyze large amounts of data. To produce cylinder heads at its plant in Untertürkheim, Germany, Mercedes-Benz uses predictive analytics to examine more than 600 parameters that influence quality.

    Plant Processes

    By using new digital technologies, manufacturers are taking lean management to the next level and exploiting its full potential. Indeed, our survey results indicate that optimizing plant processes will be even more important in the future: 97% of automotive respondents said lean management would be highly relevant in 2030, compared with 70% who said it is important today. Two key elements of lean management that are being further enhanced by digital technologies are customer centricity and continuous improvement.

    • Customer Centricity. Manufacturers are gaining a better understanding of customer needs by, for example, applying big data analytics to obtain insights into how customers use products. Companies are, in turn, using these customer insights to improve their product designs and production processes. Companies are also envisioning using new technologies to allow customers to provide input regarding the production of their vehicle. According to Daimler, customers will be able to request last-minute modifications, such as a change to a vehicle’s color while it is in route to the paint shop.
    • Continuous Improvement. Manufacturers are using a wide variety of new technologies to perform more value-adding activities and to continuously improve production processes. Bosch has implemented software that analyzes data about its production of fuel injectors in real time. The software monitors process adherence and recognizes trends. It automatically transmits information about deviations to operators, allowing them to improve the process accordingly.