Self-Driving Vehicles, Robo-Taxis, and the Urban Mobility Revolution

Self-Driving Vehicles, Robo-Taxis, and the Urban Mobility Revolution

          
Article image

Self-Driving Vehicles, Robo-Taxis, and the Urban Mobility Revolution

  • Add To Interests
  • SAVE CONTENT
  • PRINT
  • PDF

  • It promises to be the most far-reaching advance in mobility since the invention of the automobile itself, but its biggest impact won’t be felt on the highway. Cities are where self-driving vehicles (SDVs, which are also known as autonomous vehicles) are most likely to fundamentally change—for the better—how people live, work, and, of course, get around. Far fewer accidents and much lower costs, as well as higher traffic efficiency, improved productivity, and lower pollution are just some of the anticipated benefits. Our research indicates, for example, that widespread urban adoption of SDVs and “robo-taxis” (and, especially, shared self-driving taxis) could result in a 60% drop in the number of cars on city streets, an 80% or greater decrease in tailpipe emissions, and 90% fewer road accidents.

    The impact of SDVs in cities will be outsize, because cities are both our biggest and our fastest-growing population centers. Half of humanity—3.5 billion people—live in urban areas today, and by 2030, two-thirds of the global population will reside in urban locations. Cities account for 60% to 80% of energy consumption and 70% of worldwide greenhouse-gas emissions. But there is also broad recognition, in the words of the United Nations, that “the high density of cities can bring efficiency gains and technological innovation while reducing resource and energy consumption.” Goal number 11 of the UN’s Sustainable Development Goals: 17 Goals to Transform Our World is to “make cities inclusive, safe, resilient and sustainable.” SDVs, along with other technology-enabled advances, such as intelligent traffic management, are essential.

    As BCG reported in April 2015, it is no longer a question of if but when SDVs will hit the road. (See Revolution in the Driver’s Seat: The Road to Autonomous Vehicles, BCG report, April 2015.) Multiple parties are already at work developing autonomous-driving technologies, and the trend toward putting SDVs on the road is rapidly gaining momentum across a broad front that encompasses OEMs, suppliers, mobility providers, technology companies, academic institutions, governments, and regulatory bodies. At international auto and consumer technology shows, increasing numbers of automakers and technology companies are showing off their SDV visions, and the number of players working on autonomous driving is rising rapidly. (See, for example, “Connected Trends: CES 2016 Observations and Questions from the Floor,” BCG article, January 2016.) New experiments, trials, and goals are announced almost daily. Dubai, for example, recently stated its ambition to have 25% of all trips driverless by 2030.

    While technological development continues apace, SDV stakeholders are also addressing the societal, legal, and regulatory issues that will arise as these vehicles come to market. Urbanites—policymakers, planners, companies, and ordinary residents who have a stake in the world’s cities—will want to be involved as the city of the future, which might be very different from the cities we know now, takes shape around SDV technology and other advances in mobility.

    Many public policymakers are already focusing their attention on autonomous transportation and on understanding its potential impact. The US Department of Transportation mounted a Smart City Challenge, funding up to $40 million to “one mid-sized city that puts forward bold, data-driven ideas to improve lives by making transportation safer, easier, and more reliable.” Sweden’s government has launched Drive Sweden, a “strategic innovation program” that focuses on new mobility models, including automated transportation. Modifications to Swedish legislation, if enacted, will make SDV testing easier. Germany has already loosened legal barriers to SDV testing, so long as the driver can override autonomous control. In Finland, the Ministry of Transport and Communications is preparing a legal framework for SDV testing and has named a working group to prepare the necessary actions. Many other jurisdictions—including Austria, France, the Netherlands, the UK, and the US—are also in the process of adopting SDV legislation or have already done so.

    This report is the result of a collaboration between BCG and the World Economic Forum. (See “About this Report.”) The terms self-driving, autonomous, and SDV, which we use interchangeably, refer to fully self-driving vehicles unless stated otherwise. The term robo-taxi means a sequentially or simultaneously shared SDV with any number of occupants.

    About This Report

    The Boston Consulting Group and the World Economic Forum have been collaborating on a project dedicated to shaping new urban mobility with self-driving vehicles. The early stages of this project involved substantial research with consumers, urban officials, and policymakers worldwide. Their opinions and views form the basis of this report.

    The qualitative research—which encompassed focus groups with a total of 56 participants in Berlin, London, and Singapore—was designed to uncover unprompted attitudes, attractions, and concerns related to SDVs and to use the findings to inform the quantitative research. The survey—the largest to date dedicated to SDVs—involved 5,500 consumers in 27 cities in ten countries: China, France, Germany, India, Japan, the Netherlands, Singapore, the United Arab Emirates, the UK, and the US.

    We also considered urban priorities and challenges and the potential role of SDVs and related mobility models, discussing these topics with 25 policymakers, including mayors, heads of traffic departments, and members of traffic innovation teams in 12 cities: Amsterdam, Dubai, Düsseldorf, Gothenburg, Graz, Helsinki, Miami, Milton Keynes, New York, Pittsburgh, Singapore, and Toronto.

    In the following chapters, we present the current views of consumers and policymakers on SDVs in an urban context. We also analyze four possible scenarios that illustrate SDVs’ impact on urban areas on the basis of varying adoption dynamics and city policies. How each of these scenarios plays out—and the extent to which cities will be able to reap the benefits that autonomous transportation promises—depends substantially on the extent and pace of cooperation and collaboration among multiple players in the public and private sectors over the next decade or two.

  • Add To Interests
  • SAVE CONTENT
  • PRINT
  • PDF