Revolution in the Driver’s Seat: The Road to Autonomous Vehicles

Revolution in the Driver’s Seat: The Road to Autonomous Vehicles

          
Article image

Revolution in the Driver’s Seat: The Road to Autonomous Vehicles


  • Add To Interests
  • SAVE CONTENT
  • PRINT
  • PDF

  • April 2015
    Robo-Taxis and the New Mobility
    Autonomous vehicles promise to upend the urban-taxi business, with far-reaching implications for industry incumbents, disruptive new entrants, municipal officials, and—most of all—commuters.

    It is no longer a question of if but when autonomous vehicles (AVs) will hit the road. In the auto industry’s most significant inflection in 100 years, vehicles with varying levels of self-driving capability—ranging from single-lane highway driving to autonomous valet parking to traffic jam autopilot—will start to become available to consumers as soon as mid-2015 or early 2016. Development of autonomous-driving technology is gaining momentum across a broad front that encompasses OEMs, suppliers, technology providers, academic institutions, municipal governments, and regulatory bodies.

    While technological development continues apace, AV stakeholders are also addressing the societal, legal, and regulatory issues that will arise as AVs come to market. We will analyze those issues and possible solutions in a forthcoming report that draws on our collaboration with the World Economic Forum. (See “Not by Technology Alone: The Societal, Legal, and Regulatory Aspects of AV Development.”)

    Not by Technology Alone
    The Societal, Legal, and Regulatory Aspects of AV Development

    A forthcoming report by The Boston Consulting Group, in collaboration with the World Economic Forum, examines the societal, legal, and regulatory ramifications of autonomous vehicles (AVs) and the measures that need to be in place to promote their widespread adoption. The following are some of the report’s main messages.

    Continued and accelerating technological development is, of course, crucial to the formation of a commercial market for AVs. But it is equally important to ensure that by the time partially and fully autonomous vehicles are ready for launch, international, national, and local laws and regulations are in place to support their operation. So far, pilot tests of AVs have moved forward by means of special permits or legislation. Commercial adoption, however, will require regulators to address three key topics:

    • Traffic Regulation. Will an AV be allowed on the roadway if a human being is not at least partially responsible for its operation?
    • Liability Laws. Who is liable in an accident or malfunction involving an AV?
    • Standards. What performance standards and testing procedures need to be defined to ensure the safety and cybersecurity of AVs?

    Governments and regulators in several countries—including Japan, South Korea, China, and in Western Europe—are already considering these questions. But the U.S. is at the forefront of regulatory development, especially in the field of traffic regulation. Five states have enacted laws that allow the use of AVs, and the U.S. Department of Transportation’s 2015 to 2019 research-and-development plan includes provisions for safe and connected vehicle automation.

    In terms of liability, factors to be considered include risk-limiting measures for vehicle manufacturers, which might bear a greater share of liability as vehicles become more and more autonomous. Such measures could include, for example, capping manufacturers’ liability exposure if they comply with government-endorsed performance standards. To this end, current automotive standards need to be extended to account for AVs. Standard-setting bodies can employ output-oriented methods, such as digital simulations, test tracks, and real-world pilots to define standards and test procedures.

    AVs promise tremendous societal benefits. They could save many lives—the death toll from automotive accidents today is more than 30,000 per year in the U.S. alone—reduce congestion, improve fuel economy, enhance lane capacity, and return hundreds of productive hours annually to commuters who now waste significant portions of their day in traffic.

    Because of the enormous potential benefits that AVs offer, regulators around the world are taking a strong interest in AV technology, as evidenced by the many pilot programs under way in municipalities as diverse as Singapore and Gothenburg, Sweden.

    At the same time, policy makers are answerable to various stakeholders, including the general public and the business community, and entrenched interests could complicate the transition to AVs, in a manner analogous to Uber’s recent conflicts with European taxi unions. Negatively affected stakeholders—including taxi and truck drivers, insurers, and personal-injury and traffic litigation lawyers—may exert significant pressure on public-policy makers to protect their interests. Authorities may need to develop mitigation strategies to soften the blow on the stakeholders that suffer the greatest disruption.

    Societal pressure could also pose an obstacle. At present, the public is generally very enthusiastic about the technology, but that could change quickly. If, for example, a horrible accident involving an AV occurred in the early stages of market introduction, regulators could face pressure to take a tough stand against such vehicles. To ensure strong, sustained public support, the industry will need to engage with the general public and be forthright about both the limitations and the benefits of the technology.

    Aggressive players in virtually every segment of the automotive value chain have unveiled, or are conducting pilot programs of, partially or fully autonomous vehicles or enabling technologies in locations around the world. Audi, for example, presented its highly autonomous A7 model, which has highway-driving capability, at the 2015 Consumer Electronics Show in Las Vegas. The car had driven itself to the show from San Francisco—a distance of 550 miles.

    BMW has tested its autonomous Series 2 model on closed tracks and city streets. Daimler is testing both highly and fully autonomous vehicles in the U.S. and Germany. Tesla and GM plan to roll out models capable of hands-free highway driving in the summer of 2015 and 2016, respectively. Nissan has already tested its Autonomous Drive technology, which enables highly autonomous functionality, on public roads in Japan. The company plans the commercial launch of a model with traffic jam autopilot in late 2016.

    Volvo and various Swedish government bodies in 2014 launched the “Drive Me” initiative, in which 100 self-driving cars navigate public roadways in everyday conditions in and around the city of Gothenburg. The project’s first test cars are already on the road. And the prototypes of Google’s AVs have been widely publicized.

    Meanwhile, Wageningen University, in the Netherlands, plans to introduce a driverless taxi later this year. The vehicle, one of the first of its kind, will operate between two campus locations. Milton Keynes, a planned community in the UK, is developing self-driving “public transport pods” for rollout in 2017. Last year, Singapore conducted a two-month test of driverless vehicles, in which 500 people tried out self-driving buggies that plied the paths of the gardens in the city’s Jurong Lake district. Later this year, the city will begin testing AV jitneys that will convey people for short distances at low speeds in another part of town. The object of the test is to observe how AVs perform in real traffic conditions on public roads and how they interact with pedestrians and bicyclists at intersections.

    Suppliers are preparing for the AV future as well. Bosch, Continental, Delphi Automotive, Mobileye, Valeo, Velodyne, and Nvidia, to name a few, are among the suppliers that are in the advanced stages of testing the positioning, guidance, and processing technology needed to make AVs a commercial reality.

    In this report, we consider and quantify consumer preferences regarding autonomous features and the technological, economic, societal, and regulatory evolutions that must occur for autonomous vehicles to become a commercial reality. We pinpoint the key obstacles to the development of partially and fully autonomous vehicles and identify the likely uses of AVs in both personal and commercial contexts. We also offer a roadmap for the development of the AV market for the automotive industry, technology providers, and regulators, outlining the steps that each stakeholder will need to take for that development to occur.

  • Add To Interests
  • SAVE CONTENT
  • PRINT
  • PDF